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ABSTRACT
Quantitative trait loci (QTL) are easily studied in a biallelic system. Such a system requires the cross of

two inbred lines presumably fixed for alternative alleles of the QTL. However, development of inbred
lines can be time consuming and cost ineffective for species with long generation intervals and severe
inbreeding depression. In addition, restriction of the investigation to a biallelic system can sometimes be
misleading because many potentially important allelic interactions do not have a chance to express and
thus fail to be detected. A complicated mating design involving multiple alleles mimics the actual breeding
system. However, it is difficult to develop the statistical model and algorithm using the classical maximum-
likelihood method. In this study, we investigate the application of a Bayesian method implemented via
the Markov chain Monte Carlo (MCMC) algorithm to QTL mapping under arbitrarily complicated mating
designs. We develop the method under a mixed-model framework where the genetic values of founder
alleles are treated as random and the nongenetic effects are treated as fixed. With the MCMC algorithm,
we first draw the gene flows from the founders to the descendants for each QTL and then draw samples
of the genetic parameters. Finally, we are able to simultaneously infer the posterior distribution of the
number, the additive and dominance variances, and the chromosomal locations of all identified QTL.

THE availability of dense molecular marker maps Slate et al. 1999). The main reasons behind this in-
creased power are: (1) a complex pedigree increasesprovides a large opportunity to locate genes respon-

sible for variation of quantitative traits in plants, animals, the chance that founder alleles are equally represented
in the mapping population; and (2) there are moreand humans. Experimental design and methodology

are two important issues in quantitative trait loci (QTL) informative meioses in a complex pedigree than in a
simple pedigree for the same number of genotypes.mapping. Most QTL mapping techniques require de-

signed line crosses, e.g., F2 or backcross (BC). These A variety of methods have been developed for QTL
mapping (Hoeschele at al. 1997; Lynch and Walshcrosses do not exist in natural populations and are not
1998). These methods can be classified into three cate-commonly used in some plant species in the breeding
gories: least-squares analysis (LS), maximum-likelihoodindustry. It is not economical to design such line cross
analysis (ML), and Bayesian analysis. These methodsexperiments solely for the purpose of QTL mapping if
differ in computational requirement, efficiency in termsthese crosses are not regularly used in a breeding pro-
of extracting information, flexibility with regard to han-gram. Almost all natural populations and most domesti-
dling different data structures, and ability in mappingcated plant populations consist of complicated pedigree
multiple QTL. The simple LS method is efficient instructures. Even if inbred lines are used, different
terms of computational speed, but cannot extract allcrosses may be connected by some common ancestors.
information from the data and is restricted to specificA mating design combining information from multiple
mating designs. ML interval mapping (Lander andcrosses is more powerful than one involving a single
Botstein 1989) is one of the most widely used methodscross (Muranty 1996; Xu 1998). Multiple crosses in-
for QTL analysis in a single cross. The interval mappingcrease the polymorphic levels of QTL alleles and may
method has been extended to composite interval map-permit the detection of QTL that are undetectable in
ping and multiple interval mapping (Jansen 1993; Zenga single line cross. Animal and human geneticists have
1993; Kao et al. 1999). These extensions are designedpaid considerable attention to the relative power of
particularly for mapping multiple QTL in a single linesimple pedigree analysis and more complicated family
cross. However, it is not straightforward to apply thesestructures in linkage analysis of QTL and found that
methods to QTL mapping in general pedigrees. Thelarge complex pedigree designs are usually more power-
identical-by-descent-based variance component methodful (e.g., Weller et al. 1990; Wijsman and Amos 1997;
can be applied to general pedigrees (Almasy and
Blangero 1998). This method not only incorporates
full pedigree information but also is robust to the num-
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Amos 1994; Xu and Atchley 1995). The identical-by- reversible jump Markov chain Monte Carlo (MCMC)
algorithm, which allows simultaneous estimation of thedescent (IBD)-based variance component approach has

become a very useful strategy for QTL mapping in hu- number, the locations, and effects of identified QTL.
mans. If the linkage phase information is indeed known,
by ignoring such information, the IBD method may be

STATISTICAL METHODSsuboptimal. It is also questionable to apply this method
to plants where the pedigree sizes are usually large due Mixed model: Assume that the mapping population
to the need to invert large IBD matrices repeatedly for consists of n individuals with arbitrary pedigree relation-
each QTL position considered. ships, and among the n individuals there are m founders

Bayesian analysis is preferable because of its conve- and (n 2 m) nonfounders. The whole population may
nience and flexibility in the use of full pedigrees and consist of a single large pedigree or multiple indepen-
mapping multiple QTL, although it is computationally dent pedigrees. A founder in a pedigree is defined as
very demanding. Bayesian mapping fully takes into ac- an individual with no parents included in the pedigree.
count the uncertainties associated with all unknowns in In contrast, a nonfounder is defined as an individual
the QTL mapping problem, including the number and with both parents included in the pedigree. Founders
locations of QTL, effects of QTL, and the genotypes of are assumed to be unrelated but can be inbred. The
markers and QTL. In plant line-crossing experiments, descendants may be related in an arbitrary way.
Bayesian mapping has been developed by using the Let y represent an n 3 1 vector for the observed
Markov chain Monte Carlo algorithm, in particular, for values of a quantitative trait. When the trait is controlled
detection of multiple QTL (Satagopan and Yandell by multiple genes acting independently, y can be de-
1996; Satagopan et al. 1996; Sillanpää and Arjas 1998, scribed by the linear model
1999; Stephens and Fisch 1998; Yi and Xu 2000). In

y 5 Xb 1 o
l

j51

(up
j 1 um

j 1 vj) 1 e, (1)animals and humans, Bayesian mapping has been de-
signed not only to map multiple QTL, but also to extract
full pedigree information (Heath 1997; Uimari and where X is a known design matrix for a vector of nonge-
Hoeschele 1997). However, most existing Bayesian netic effects b (including the overall mean), l is the
mapping methods assume a biallelic QTL model. Al- number of QTL on all chromosomes, up

j and um
j are n 3

though this assumption may be reasonable for a single 1 vectors for the paternal and maternal allelic effects
line cross, it is less so for complex pedigrees. Therefore, for the jth QTL, vj is an n 3 1 vector for the dominance
Bayesian mapping needs to be extended to multiallelic effects for the jth QTL, and e is the vector of residual
systems. (environmental) effects. This model is written in the

There are several differences between plants and ani- original form of the animal model (Fernando and
mals or humans in the context of general pedigrees: Grossman 1989) except that we have included the dom-
(i) many plant species are self-compatible and one must inance effects.
deal with a system that involves a mixture of selfing Denote aj as a 2m 3 1 vector for the effects of the
and outcrossing; (ii) inbreeding and line crossing are founder alleles (with m ancestors, each with two alleles)
common mating designs in most plant breeding popula- and dj as a vector of interaction effects (dominance
tions; (iii) a breeding population of plants usually con- effects) between all possible pairs of the 2m founder
tains fewer founders than an animal or human popula- alleles at the jth QTL. The dimension of dj is m(2m 1
tion and the founders can be pure inbred lines; and 1). The dimension of dj can be reduced greatly in some
(iv) family sizes of plants are usually large compared mating designs where it is impossible for some founder
with animals and humans. These differences provide alleles to be combined in any descendant. The QTL
additional opportunities for detecting QTL. Unfortu- effects of all individuals can be expressed as linear func-
nately, the Bayesian mapping methods developed for tions of the allelic effects and their interactions in the
human and animal pedigrees cannot handle the unique founders, i.e., up

j 5 Zp
j aj, um

j 5 Zm
j aj, and vj 5 Wjdj, leading

properties for plant pedigrees. This poses unique chal- to
lenges for plant geneticists to develop new QTL map-

y 5 Xb 1 o
l

j51

(Zp
j 1 Zm

j )aj 1 o
l

j51

Wjdj 1 e. (2)ping statistics.
In this article, we develop a Bayesian method of QTL

mapping under arbitrarily complicated mating designs, This model is written in the form of a reduced animal
model (Cantet and Smith 1991) in which each alleleincluding a group of independent or related F2 or back-

cross populations and complicated multiple-generation is traced back to one of the founder alleles through n 3
2m matrices Zp

j and Zm
j , also called the allelic inheritancecross populations derived from inbred or outbred

founders. The method is so flexible that it can handle matrices. Note that the n 3 m(2m 1 1) dominance
design matrix Wj is a function of Zp

j and Zm
j . The allelica variety of genetic models, such as arbitrary number of

QTL alleles, dominance effects, and fixed and random inheritance matrices are not observable, but their distri-
butions are deduced from molecular markers linked tomodels. The Bayesian method is implemented via a
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the chromosome on which the jth QTL resides. There- each QTL has a uniform distribution of residing at any
location on that chromosome. The prior distributionsfore, the distributions of Zp

j and Zm
j are functions of

marker information and the chromosomal location of of b and s2
e are assumed to be uniform on predefined

intervals, although other priors can be used. Finally,the jth QTL. The environmental effects are assumed to
follow a N(0, Is2

e) distribution. p(Zp, Zm, M|l, l, M*) is the joint conditional distribution
of QTL allelic inheritance matrices and completeThe observables in model (2) include the phenotypic

values, y 5 {yi}n
i51, the covariate X, and the marker data marker genotypes.

In some situations, we need to add an extra layer toM*. The marker data include the locations of markers
on chromosomes and the observed (possibly incom- the hierarchical model. The distributions p(aj) and p(dj)

depend on other unknown quantities s2
aj and s2

dj , theplete) marker genotypes. The observed marker geno-
types in some individuals may not be fully informative allelic and dominance variance of the jth QTL. In other

words, we replace p(aj) by p(aj, s2
aj) 5 p(aj|s2

aj)p(s2
aj) andand the patterns of allelic inheritance of such markers

p(dj) by p(dj, s2
dj) 5 p(dj|s2

dj)p(s2
dj). The parameters ofmay also be unknown. The list of unobservables includes

interest now are s2
aj and s2

dj , with aj and dj being treatedthe number of QTL l, the QTL locations l 5 {lj}l
j51, the

as missing values. The joint posterior distribution of allcomplete marker genotype matrix M, the QTL allelic
variables is then factorized asinheritance matrices Zp 5 {Zp

j }l
j51 and Zm 5 {Zm

j }l
j51, the

QTL allelic effects a 5 {aj}l
j51, the QTL dominance ef-

p(u, Va, Vd|y, X, M*) ~ p(y|u)p(Zp, Zm, M|l, l, M*)fects d 5 {dj}l
j51, and the residual variance s2

e. The loca-
tion parameter, lj, is expressed as the distance of the jth 3 p(l)p(b)p(s2

e)
QTL from one end of the chromosome. The complete

3 p
l

j51

hp(aj|s2
aj)p(s2

aj)p(dj|s2
dj)marker genotype means marker genotype with known

linkage phase. A complete genotype for a nonfounder
3 p(s2

dj)p(lj)j, (5)means a known allelic inheritance pattern. The QTL
dominance design matrices are suppressed in the list

where Va 5 {s2
aj}

l
j51, Vd 5 {s2

dj}
l
j51, and the distributionsof unknowns because they are completely determined

p(aj|s2
aj) and p(dj|s2

dj) are multivariate normal as givenby the QTL allelic inheritance matrices.
in the appendix. We use uniform prior distributionsIn a Bayesian framework, the unknowns in the model
for p(s2

aj) and p(s2
dj) within some predetermined inter-are considered to be drawn from appropriate prior dis-

vals. Other terms in Equation 5 are the same as intributions. The joint posterior distribution of all unob-
Equation 3.servables u 5 {l, l, a, d, b, M, Zp, Zm, s2

e} given the
Equations 3 and 5 correspond to two different ap-observables {y, X, M*} and prior information can be

proaches in QTL mapping, i.e., the fixed-model andexpressed as
the random-model approaches, respectively. If there are
only a few founders who are not randomly sampledp(u|y, X, M*) ~ p(y|u)p(Zp, Zm, M|l, l, M*)
from a large reference population, our interest may be

3 p(l)p(b)p(s2
e) only in the values of the actual allelic effects and the

dominance effects for the founders at hand. Under the3 p
l

j51

hp(aj)p(dj)p(lj)j. (3)
fixed-model approach the priors for the allelic and dom-
inance effects are treated as variable with known distri-

The likelihood function p(y|u) depends on the distri- butions. The fixed-model approach is very common in
bution of y. For normally distributed traits, it has the designed line-crossing experiments, e.g., F2 and BC de-
form signs, where the average effect of allelic substitution

is the parameter of interest. When the founders are
p(y|u) ~ (s2

e)2n/2 3 exp52 1
2s2

e

RTR6, (4) randomly sampled from a reference population, we are
usually interested in the variances of the genetic effects
in the population from which the founders are sampled.where R 5 y 2 Xb 2 Rl

j51(Zp
j 1 Zm

j )aj 2 Rl
j51Wjdj .

The priors of the allelic and dominance effects of In this case, the distributions for the allelic and domi-
nance effects of founders depend on some unknownQTL, p(aj) and p(dj), depend on the inbreeding coeffi-

cients of the founders (see appendix). The inclusion parameters. When the number of founders is so small
that a meaningful estimate of the allelic or dominanceof inbreeding coefficients of founders enables the pro-

posed method to treat inbred founders. The prior distri- variance cannot be inferred from the limited number
of alleles sampled, we may still use the fixed-model ap-bution of the number of QTL, p(l), is assumed to be

a truncated Poisson distribution with mean m and a proach, even if the founders are a random sample. In
this study, we concentrate on the random model ap-predefined maximum number lmax. When no informa-

tion regarding the locations is available, the prior proba- proach.
Reversible jump MCMC: In Bayesian analysis, infer-bility that a QTL is on a chromosome is proportional to

the length of the chromosome. Within a chromosome, ences about the parameters of interest are based on the
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joint posterior distribution of all unknowns. Since the where u* means all elements of u except that aj
k is re-

placed by the proposal aj *
k .joint posterior distribution does not have a standard

The dominance effects of QTL are updated for twoform, MCMC samplers are used to generate samples
founders at a time, again in a locus-by-locus basis. De-from the joint posterior distribution (Metropolis et al.
note dj

kk9 as a vector of dominance effects between alleles1953; Hastings 1970; Geman and Geman 1984; Green
of founder k and alleles of founder k9 at the jth QTL.1995). The MCMC algorithm consists of the following
The dimension of dj

kk9 is three or four, depending onsteps:
whether k equals k9 (see the appendix). To update

a. Updating QTL allelic effects a 5 {aj}l
j51; dj

kk9, a new proposal dj *
kk9 is simulated by random walk,

b. Updating QTL dominance effects d 5 {dj}l
j51; denoted by

c. Updating QTL allelic variances Va 5 {s2
aj}

l
j51;

dj *
kk9 5 dj

kk9 1 (d1, fkd1 1 (1 2 fk)d2, fkd1 1 (1 2 fk)d4)Td. Updating QTL dominance variances Vd 5 {s2
dj}

l
j51;

e. Updating the fixed effects b and residual variance if k9 5 k; otherwise,
s2

e;
f. Updating complete marker genotypes M and QTL dj *

kk9 5 dj
kk9 1 (d1, fkd1 1 (1 2 fk)d2, fk9d1

allelic inheritance matrices Zp and Zm;
1 (1 2 fk9)d3, fkfk9d1 1 (1 2 fk)fk9d2g. Updating QTL locations l 5 {lj}l

j51;
1 fk(1 2 fk9)d3 1 (1 2 fk)(1 2 fk9)d4)T,h. Birth of a QTL (adding one new QTL to the model)

or death of a QTL (removing one existing QTL from
where d1, d2, d3, and d4 are sampled independently fromthe model).
the symmetric uniform distribution around zero. The
new proposal is accepted with probabilityThe proposed algorithm starts from an initial point

and proceeds to update each of the unknowns in turn.
min51,

p(y|u*)p(dj *
kk9|s2

dj)

p(y|u)p(dj
kk9|s2

dj
) 6, (7)One complete pass over these eight update steps defines

a cycle of iteration. Updating steps (a)–(g) are conven-
tional and do not alter the dimension of the variable where u* means all elements of u except that dj

kk9 is
vector. We use Metropolis-Hastings algorithms to imple- replaced by the proposal dj*

kk9.
ment steps (a)–(e) and (g), and the Gibbs sampler to Updating QTL variances: QTL allelic and dominance
update step (f). Step (h) involves changing QTL num- variances are updated locus by locus. To update s2

aj and
ber by one and making necessary corresponding s2

dj
, new proposals s2*

aj
and s2*

dj
are sampled from the

changes to (a, d, Va, Vd, Zp, Zm, l). A reversible jump
symmetric uniform densities around their previous val-

step is needed to change the number of QTL.
ues. The proposals are accepted with probabilities

Several methods have been available for updating
marker genotypes in general pedigrees (e.g., Sobel and
Lange 1996; Heath 1997; Uimari and Hoeschele min51, pm

k51 p(aj
k|s2*

aj
)

pm
k51 p(aj

k|s2
aj
)6 and min51, pm

k51 pm
k95k p(dj

kk9|s2*
dj

)

pm
k51 pm

k95k p(dj
kk9|s2

dj
)6,1997; Bink and Van Arendonk 1999). In the simulation

study (see the next section), we adopt the method of (8)
Bink and Van Arendonk (1999) to update the marker

respectively.genotypes. For more complicated situations, a descent
Updating QTL allelic inheritance Z p and Zm: Each allelegraph sampler of Sobel and Lange (1996) is needed

in the descendants can be traced back to one of the(see discussion). Updating the fixed effects b and resid-
founder alleles. This is reflected by ap

j 5 Zp
j aj and am

j 5ual variance s2
e is also straightforward.

Zm
j aj, where each row of matrices Zp

j and Zm
j has oneUpdating QTL effects: The allelic effects of QTL are

element taking 1 and all other elements being 0. It isupdated founder by founder and locus by locus. Denote
not convenient to generate realizations of Zp

j and Zm
jaj

k as a 2 3 1 vector for the allelic effects of the kth
directly, but we can easily generate a sample of Zp

j andfounder at the jth QTL (appendix). To update aj
k, two

Zm
j indirectly through the following recursive approach.random variables, d1 and d2, are simulated indepen-
Consider a pedigree with m founders. Let the 2mdently from the symmetric uniform distribution around

founder alleles be numbered consecutively from 1 tozero (random walk). The length of this uniform distribu-
2m. Then allele 2k 2 1 and 2k are the two alleles of thetion is determined empirically and should result in a
kth founder. Assume that individuals are entered intoreasonable rate of average acceptance rate. A new pro-
the pedigree in a chronological order so that the parentsposal value of aj

k takes aj *
k 5 aj

k 1 (d1, fkd1 1 (1 2 fk)d2)T,
are evaluated before their progeny. Denote Zp

j (i) andwhere fk is the inbreeding coefficient of the kth founder.
Zm

j (i) as the ith rows of Zp
j and Zm

j , respectively; i.e., Zp
jThe new proposal is accepted with probability

(i) and Zm
j (i) store the allele identifications of the pater-

nal and maternal alleles of individual i, respectively. Formin51,
p(y|u*)p(aj *

k |s2
aj)

p(y|u)p(aj
k|s2

aj)
6, (6)

example, if the paternal allele of individual i is traced
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back to allele 3 of the founders and the maternal allele The proposals are accepted with probability
is traced back to allele 10 of the founders, then the
third element of Zp

j (i) is 1 and all other elements are min



1,

p(y|u*, l*j , Zp*
j , Zm*

j )
p(y|u)

3
p(Up*

j , Um*
j |l*j , GL

j , GR
j )

p(Up
j , Um

j |lj, GL
j , GR

j )
3

q(Up
j , Um

j )
q(Up*

j , Um*
j )





,
0, and the tenth element of Zm

j (i) is 1 and all other
(9)elements are 0. We now describe the recurrent process

of building matrices Zp
j and Zm

j . Assume that we have
where u* contains all elements of u except lj, Zp

j , Zm
j .already built matrices Zp

j and Zm
j up to the first (i 2 1)th

Let GL
j (GR

j ) denote the complete genotypes of all pedi-rows and are ready to build the ith rows. If the ith
gree members at the left (right) flanking locus of theindividual is a founder, say the kth founder, then the
corresponding location. If the proposals are accepted,(2k 2 1)th element of Zp

j (i) and the (2k 1 1)th element
we update the location of the jth QTL and also modifyof Zm

j (i) are 1. If the ith individual is not a founder but
the segregation indicators, the allelic inheritance, andthe progeny of individuals i1 (father) and i2 (mother),
dominance design matrices at the jth QTL at the samethen
time.

Updating QTL number: The reversible jump mechanismZp
j (i) 5 u p

ij Zp
j (i l) 1 (1 2 u p

ij)Zm
j (i1)

is needed to change the QTL number in the model. In
and this study, a reversible pair is used: birth/death of a

QTL. In every cycle of the simulation, we make a randomZm
j (i) 5 um

ij Zp
j (i2) 1 (1 2 um

ij )Zm
j (i2),

choice between attempting to add one new QTL into
the model or delete one existing QTL from the model,where u p

ij and um
ij are the paternal and maternal segrega-

with probabilities pa and pd 5 1 2 pa, respectively. Oftion (meiosis) indicators, respectively, for individual i
course, pa 5 0 if l 5 lmax and pd 5 0 if l 5 0, and otherwiseat the jth QTL. If the paternal allele of the father is
we choose pa 5 0.5, for 0 , l , lmax.passed to individual i, then u p

ij 5 1; otherwise, u p
ij 5 0.

For a birth step, we need to generate a new locationThe value of um
ij is similarly defined but for the allelic

ll11, a new allelic variance s2
al11, a new dominance vari-inheritance of the mother. Note that Zp

j (i1), Zm
j (i1),

ance s2
dl11, a new vector of allelic effects of the founderZp

j (i2), and Zm
j (i2) have been previously built because

alleles al11, a new vector of dominance effects betweeni1 # i 2 1 and i2 # i 2 1. Therefore, to trace the allelic
all possible pairs of the founder alleles dl11, and neworigin, one only needs to simulate the segregation indi-
inheritance and dominance design matrices of all pedi-cators for each descendant.
gree members Zp

l11, Zm
l11, and Wl11 for the new QTL. TheSimulating the segregation indicators (u p

ij, um
ij ) is

new location ll11 and the variances s2
al11 and s2

dl11straightforward. The segregation indicators (u p
ij, um

ij ) can
are sampled from the corresponding prior densities.take four possible values, i.e., (1, 1), (1, 0), (0, 1), and
The allelic effects al11 and the dominance effects dl11(0, 0). The conditional posterior distribution is thus a
are then simulated from the distributions p(al11|s2

al11)discrete distribution over the four possible allelic inheri-
and p(dl11|s2

dl11) described in the appendix. The segre-tance patterns and depends on the position of the QTL,
gation indicator matrices, denoted as Up

l11 and Um
l11, arethe segregation indicators of flanking loci (markers or

generated from q(Up
l11, Um

l11) using the method of updat-QTL), the phenotypic value of the progeny, and other
ing QTL allelic inheritance matrices, and new inheri-parameter values in the model. We then sample a value
tance and dominance design matrices Zp

l11, Zm
l11, andfrom the posterior distribution and convert the segrega-

Wl11 are then calculated. The proposal is accepted withtion indicators into the design matrices using the re-
probabilitycursive equation. The recursive algorithm for QTL al-

lelic inheritance can be applied to complicated designs
with mixture of outcrossing and selfing. min




1,

p(y|u*)
p(y|u)

3
m 3 p(Up

l11, Um
l11,|ll11, GL

l11, GR
l11)

l 1 1Updating QTL locations: Similar to the method of Sil-
lanpää and Arjas (1998, 1999), we do not fix the order

3
pd/(l 1 1)

pa 3 q(Up
l11, Um

l11)




, (10)of QTL when updating the QTL locations. Elements

of l are modified one at a time using the Metropolis
algorithm. For the jth QTL, a proposal l*j is sampled where u* 5 (u, ll11, al11, dl11, Zp

l11, Zm
l11) with l in u

replaced by (l 1 1); GL
l11(GR

l11) denotes the completefrom a symmetric uniform distribution in the neighbor-
hood of the previous value lj. In the meantime, new genotypes of all pedigree members at the left (right)

flanking locus of the location ll11.proposals for the segregation indicator matrices, de-
noted by Up*

j and Um*
j , are generated according to the The death step is somewhat simpler. A random choice

is made among the existing QTL, and the chosen QTLmethod of updating QTL allelic inheritance matrices.
The new allelic inheritance matrices, Zp*

j and Zm*
j , are is then proposed to delete from the model. If the jth

existing QTL is proposed to delete, the acceptance prob-calculated using the recursive equations. Denote the
generating distribution of (Up*

j , Um*
j ) by q(Up*

j , Um*
j ). ability for the deletion is
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form 20 full-sib families in the F2 generation. Each full-
sib family is represented by an open square in the third
row of Figure 1. Again, each family consists of 50 mem-
bers, leading to 1000 individuals in the F2. The mating
was completely arbitrary, including selfing, full-sib, and
half-sib mating. Although we did not simulate parent-
offspring mating (overlapping generation), nothing
prevents us from doing that.

A quantitative trait was modeled as being controlled
by three QTL residing on two chromosomes of length
100 and 70 cM, respectively. The 40 5 2 3 20 allelic
effects and 820 5 40(40 1 1)/2 dominance effects of
each QTL in the founders were simulated from their
corresponding normal distributions. The residual vari-
ance was set at s2

e 5 1.0. The fixed effect contains only
the overall mean, which was set at b 5 0.0. The true
locations, and allelic and dominance variances of theFigure 1.—The simulated pedigree consisting of 2020 indi-

viduals over one base generation (founders) and two descen- three simulated QTL are given in Table 1. Marker data
dant generations. The 20 open circles in the first row represent were generated for all individuals. Eleven and 8 codomi-
20 founders sampled from a large random base population.

nant markers were respectively placed on the two chro-By random mating (including selfing), the 20 founders form
mosomes with a marker distance of 10 cM between two20 full-sib families (open squares in the second row), each

with 50 sibs, making a total of 1000 sibs in the F1 generation. neighboring markers. Six equally frequent alleles were
Among the 1000 F1 individuals, 20 were randomly selected to simulated at each marker locus. With this assignment
form 20 full-sib families of the F2 generation (open squares of marker allele frequencies, many loci were partiallyin the third row), each family consisting of 50 sibs, leading

informative and some were even uninformative at all.to 1000 F2 individuals.
No phenotypic records were available for the 20 found-
ers. The linkage phases of markers in the founders were
reshuffled and eventually reconstructed via the MCMC

min



1,

p(y|u*)
p(y|u)

3
l

m 3 p(Up
j , Um

j |lj, GL
j , GR

j )
3

pa 3 q(Up
j , Um

j )
pd/l





,
process. Two sets of data were analyzed: data I include
all 2020 individuals and data II include only founders(11)
and the F1 generation, a total of 1020 individuals.

where u* means all elements of u except the items
The initial value for the QTL number was set at twocorresponding to the jth QTL. Other terms of this equa-

and the corresponding locations were at 50 cM of chro-tion are defined similarly as in Equation 10.
mosome 1 and 40 cM of chromosome 2, respectively.
The prior Poisson mean of the QTL number was m 5

A SIMULATION STUDY 2 and the maximum number of QTL was lmax 5 6. The
starting values were 0.05 for all QTL allelic and domi-Design of the simulation experiment: The proposed
nance variances and 0.0 and 2.0 for the overall mean andmethod was evaluated empirically by analyzing a simu-
the residual variance, respectively. The initial markerlated large complex pedigree. The pedigree consists of
linkage phases were assigned randomly for each2020 individuals covering three discrete generations.
founder. The initial QTL allelic inheritance for eachThe pedigree is depicted in Figure 1. Twenty founders
individual was determined by the initial QTL locationswere randomly sampled from an outbred base popula-
and the initial complete genotypes of the flankingtion; i.e., founders were noninbred and genetically unre-
markers.lated to each other. These founders are numbered from

A flat prior was assigned to the overall mean. The1 to 20 and represented by open circles in the first row
priors for all variance components were chosen to beof Figure 1. With completely random mating among
uniform on (0.0, 2.0], the right endpoint being equalthe founders, 20 full-sib families were formed, each rep-
to the true phenotypic variance. The prior for the QTLresented by an open square in the second row of Figure
locations was uniform over the whole genome. The tun-1. Because of the complete randomness, some founders
ing parameters of the proposal distributions were cho-(11, 13, and 18) were not represented in the next gener-
sen to be 2.0 cM for QTL locations and 0.05 for allation while others (e.g., 1, 6, 9, etc.) were overrepre-
other parameters.sented. Each full-sib family contains 50 members so that

The proposed MCMC sampler was run for 5 3 105a total of 1000 individuals are available in the F1 genera-
cycles in each of the MCMC analyses. The first 400tion (the second row of Figure 1). From the 1000 indi-
samples (burn-in) were discarded. To reduce serial cor-viduals, we randomly selected 20 as parents of the next

generation. These 20 parents were randomly mated to relation in the samples, we saved only one in every 50
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TABLE 1

The true locations and allelic and dominance variances of the three simulated QTL

Chromosome Location (cM) Allelic variance (s2
aj
) Dominance variance (s2

aj
) Heritability

1 25 0.15 0.10 0.2
1 75 0.10 0.00 0.1
2 25 0.15 0.10 0.2

The heritability is defined as proportion of the phenotypic variance explained by the locus of interest.

cycles of simulations so that the total number of samples tions of these two parameters for data I are depicted in
Figure 4. The posterior mean and standard error arekept in the analysis was 104.

Results: The estimated posterior distributions of the 0.2175 and 0.2790 for the overall mean, and 1.2037 and
0.0552 for the residual variance, respectively. It can beQTL number in the analyses of the two data sets are

given in Table 2. In each of the data sets, it is immedi- seen that the overall mean and the residual variance
were slightly overestimated.ately apparent that there are three QTL controlling the

trait. The posterior expectations are essentially the same Following the idea of Sillanpää and Arjas (1999),
two methods were used to assess the QTL effects (vari-as the true number of QTL for both data sets. The

posterior modes of QTL numbers are consistent with ances in our case). In the first method, we constructed
the location-wise posterior densities for the variances.the true number of QTL as well. The posterior for data

II is more widely spread than that for data I, indicating In the second method, we used only the posterior sam-
ples in which QTL locations fall into the regions withthat QTL can be more accurately detected using the

extended families. sufficiently high estimated QTL intensities to estimate
the allelic and dominance variances. Let fa(Dk) and fd(Dk)QTL locations were estimated using the posterior

QTL intensity function (Sillanpää and Arjas 1998, be the cumulative distribution functions associated with
the allelic and dominance variances of a putative QTL1999). In practice, we divided each chromosome into

many small intervals of equal length, say 1 cM, and then in small interval Dk. We used the means of samples in
Dk to assess fa(Dk) and fd(Dk). Therefore, fa(Dk) and fd(Dk)calculated the proportion of QTL in each interval from

the MCMC samples. The posterior QTL intensities for can be expressed as
data I and II are presented in Figures 2 and 3, respec-
tively. The QTL intensity graphs are concentrated fa(Dk) 5

o104

m51ol(m)

q51s
2
aq
1(l(m)

q PDk)

o104
m51ol(m)

q511(l(m)
q PDk)around the true locations of the simulated QTL. Three

peaks of the graph for data I appear in [24, 25] and
and

[75, 76] on chromosome 1 and in [24, 25] on chromo-
some 2. The corresponding peaks for data II are in [25,

fd(Dk) 5
o104

m51ol(m)

q51s
2
dq
1(l(m)

q PDk)

o104
m51ol(m)

q511(l(m)
q PDk)

,26] and [75, 76] on chromosome 1 and in [25, 26] on
chromosome 2. These results not only support quite
strongly a model having three QTL but also indicate respectively, where l(m) is the number of QTL in the mth

posterior sample, l (m)
q is Note that fa(Dk) and fd(Dk) arethat the QTL locations are estimated accurately for both

data sets. Finally, we noted that it took only a few thou- meaningful only when a sufficient number of samples
are contained in Dk. The plots of fa(Dk) and fd(Dk) forsand iterations for QTL locations to converge to their

stationary states, regardless of which initial position was data I are presented in Figure 2. The chromosome re-
gions with sufficiently high posterior QTL intensity arechosen, indicating that the algorithm for updating QTL

locations is very efficient. given in Table 3. The posterior samples in which QTL
locations fell into these regions were used to estimateThe overall mean and the residual variance were esti-

mated from all MCMC samples. The posterior distribu- the QTL variances. Figure 5 depicts the posterior distri-

TABLE 2

Estimate of the posterior distribution of the QTL number and its expectation

Estimated distribution, for l 5
Estimated

0 1 2 3 4 5 6 expectation

Data I 0.0002 0.0001 0.0024 0.9459 0.0511 0.0003 0.0000 3.048
Data II 0.0000 0.0029 0.0230 0.7791 0.1921 0.0029 0.0000 3.1691
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Figure 2.—Histograms of
the posterior QTL intensity (a
and b), and QTL allelic and
dominance variance estimates
(c and d) over two chromo-
somes with bin length of 1 cM
for the analysis of data I. In c
and d, the solid and dotted
curves represent allelic and
dominance variances, respec-
tively.

butions for the QTL variances from the analysis of data the distributions of allelic and dominance effects of
QTL, i.e., p(aj) and p(dj), are treated as priors or not.I. We also calculated the means and the standard errors

of the posterior samples for the QTL variances (see If they are treated as prior distributions, the parameters
involved in the prior distributions are assessed beforeTable 3). In most situations, it appears that the estimates

of QTL variances are close to the corresponding true the experiment, and there is no attempt to estimate
them. The model is then called the fixed model. Onvalues with small standard errors. The posterior means

and the estimation errors of the QTL locations are also the other hand, if p(aj) and p(dj) are not the ultimate
priors but the distribution of missing values aj and dj,given in Table 3. It can be seen that the estimated QTL

locations are very close to the corresponding true values. we are then interested in the parameters in p(aj) and
p(dj), e.g., s2

aj , which in turn need to be assigned a prior.
We are essentially interested in making an inference

DISCUSSION
for s2

aj . In this case, the model is called a random model.
For the fixed model, the update steps for QTL variancesThere are many statistical methods and computer

programs available for QTL mapping. Most of them are in the proposed algorithm are no longer required.
Therefore, programming-wise, the difference betweenspecialized in one or two particular types of designs,

e.g., BC, F2, or multiple nuclear families. Here, we intro- a random and a fixed model depends on the turning
on/off of a single statement.duce a unified methodology of QTL mapping for arbi-

trarily complicated mating designs, ranging from a sim- The ability to handle arbitrarily complicated pedi-
grees and the flexibility of switching between fixed andple line cross to multiple independent sib-pairs. Although

we developed the method based on a random-model random models possessed by our Bayesian mapping
arise from the use of an “allelic approach” as opposedapproach, it works equally well for a fixed model. The

difference between the random and the fixed models to the traditional “genotypic approach.” In this study,
we dealt exclusively with the allelic (haplotype) valuesunder the Bayesian framework is judged only by whether
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Figure 4.—Approximate posterior distributions of the over-
Figure 3.—Histograms of the posterior QTL intensity over all mean (a) and residual variance (b) for data I.

chromosomes 1 (a) and 2 (b) with bin length of 1 cM for the
analysis of data II.

with discrete effects, we can modify the update steps
(c) and (d) in the proposed algorithm. Assume thatrather than the genotypic values. We also sampled the
there are k alleles at a certain QTL with allelic effects“allelic inheritance” from parents to offspring rather
{ai}k

i51, dominance effects {dij}i$j, and frequencies {pi}k
i51than sampling the “genotypic transition.” As a result,

in the base population, where pi, ai, and dij are the fre-there is no need to consider the number of alleles and
quency and effect of the ith allele and the dominancethe total number of genotypes per locus in the mapping
effect between alleles i and j, respectively. The priorspopulation. Instead, consideration is needed only when
for ai and dij can be assigned as independent normalwe assess the prior distribution of the founder alleles.
with known mean and variance. The prior for {pi}k

i51 canThis treatment has greatly simplified the algorithm and
take a symmetric Dirichlet. In this case, the parametersincreased the robustness of the method.
of interest are {ai}k

i51, {dij}i$j, and {pi}k
i51. The frequenciesIn QTL mapping experiments of plants, founders are

{pi}k
i51 can be updated using a Gibbs sampler because itsnot usually a random sample from a reference popula-

full conditional distribution also remains Dirichlettion. They are often selected to be complementary for
(Gelman et al. 1995; Richardson and Green 1997).some traits of interest. As a consequence, the fixed-
To update allelic effects {ai}k

i51 and dominance effectsmodel approach can be used. Under a random model,
{dij}i$j, we first simulate a proposal for each parameterhowever, the update steps for the additional parameters
by using a random walk, then update the alleles of eachincluded in the priors p(aj) and p(dj) depend on the
founder by sampling from a multinomial distribution,form of their prior distributions. We have only ex-
and finally use the Metropolis-Hastings algorithm toplained the reversible jump MCMC algorithm under

normal-effects QTL. Under the model of multiple QTL update these parameters. Similar algorithms for the bial-
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TABLE 3

Highest posterior QTL intensity interval, Bayesian estimates of QTL locations,
and allelic and dominance variances

Interval Sum of the QTL location Allelic Dominance
Chromosome (cM) QTL intensity (cM) variance s2

aj
variance s2

aj

1 20–z30 0.9074 24.9302 0.1904 0.0995
(1.6444) (0.0738) (0.0583)

70–z80 0.8717 75.5748 0.1547 0.0194
(1.9312) (0.0576) (0.0137)

2 20–z30 0.9765 24.8091 0.2067 0.2115
(1.5393) (0.0817) (0.0870)

Standard errors of the estimates are given in parentheses.

lelic QTL model have been proposed in Uimari and mixing of QTL locations in the simulation study. For
the normal QTL effects model, we found that theHoeschele (1997) and Heath (1997).

A problem may arise in real data analysis in which method used in Stephens and Fisch (1998) and Sil-
lanpää and Arjas (1998) resulted in QTL positionthe number of alleles of a putative QTL in the base

population is unknown, nor are the distributions of the stuck within the starting marker interval; i.e., the chain
was essentially reducible. Furthermore, our algorithmeffects of the QTL. In this situation, two strategies

should be considered: was much simpler than those of Heath (1997) and
Bink et al. (2000). Second, the mixing of QTL number

1. We can use the fixed-model approach to solve the was sensitive to the way in which the proposals for the
random-model problem; that is, we first estimate the new QTL were generated when one QTL was added to
allelic and dominance effects of founders and then the model and one QTL was removed from the model.
convert them into the QTL variances (Xu 1998). The proposal distribution of allelic inheritance matrix
This method is expected to be efficient in the case Zp

l11 and Zm
l11 was crucial for the reversible jump step to

where the number of founders is small. perform well. It was found that QTL number mixed
2. In the case of many founders, one may use normal poorly when p(Zp

l11, Zm
l11|ll11, GL

l11, GR
l11) was used to

distributions to approximate the prior distributions generate Zp
l11 and Zm

l11 in the normal-effects model ap-
p(aj) and p(dj). In fact, drawing inferences about the proach, although such proposal distributions of the ge-
multiallelic QTL variance via the normal distribution notypes of new QTL worked well in line crosses and the
is a natural way to characterize genetic variation in biallelic-effects model (Uimari and Hoeschele 1997;
the base population. In addition, normal distribution Sillanpää and Arjas 1998, 1999). Third, we found very
of the allelic effects is usually a very robust assump- little influence of the starting values of unknowns on
tion. This has been verified in the context of ML the mixing of the number of QTL. For example, starting
mapping by Xu and Atchley (1995) who found with l0 5 6, l quickly dropped to 3 after several hundred
that, for data simulated under a biallelic model, the iterations and subsequently behaved the same as that
analysis based on normal distribution provided very started with l0 5 3. We also found that the convergence
accurate estimates of QTL variances. speed of different parameters was quite different. As

expected, the dominance variance converged mostFurther investigation is needed to investigate the ro-
slowly due to too many dominance effects in the simu-bustness of normal distribution or other distributions
lated data. Finally, the implement of the algorithm wasin the framework of Bayesian analysis.
computationally demanding due to the intricacy of ourThe proposed reversible jump MCMC algorithm per-
MCMC sampler. The analysis of data I with a chain offormed well for the simulated data. The following points
5 3 105 cycles took z3 days on a SUN SPARC 5 worksta-are noteworthy. First, the update step of QTL locations is
tion. The most time-consuming parts of our programdifferent from existing algorithms in Bayesian mapping
were the updates of complete marker genotypes, QTL(e.g., Satagopan et al. 1996; Heath 1997; Stephens
allelic inheritance, and dominance design matrices. Theand Fisch 1998; Sillanpää and Arjas 1998, 1999; Bink
computational speed can be improved substantially withet al. 2000). We updated QTL location, allelic inheri-
more efficient programming skills.tance, and dominance design matrices simultaneously.

The assessment of the convergence and autocorrela-The acceptance probability depended on the proposed
tion of the MCMC with the use of the reversible jumplocation, the genotypes of flanking loci of the proposed
sampler remains a significant problem because the di-location (markers or QTL), and the phenotypic value
mension keeps changing from one cycle to another.of the progeny as well as other parameter values in

the model. The proposed method greatly improved the When the dimension changes, the identities of the QTL
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Figure 5.—Approximate poste-
rior distributions of the QTL al-
lelic and dominance variances for
data I. (a and b) Allelic and domi-
nance variances determined from
interval 20–z30 cM of chromo-
some one, respectively; (c and d)
allelic and dominance variances
determined from interval 70–z80
cM of chromosome 1, respectively;
(e and f) allelic and dominance
variances determined from inter-
val 20–z30 cM of chromosome 2,
respectively.

also change. The parameters in one cycle of the iteration chain, and the interval length of subsampling to reduce
the serial correlation. We used the plots of the changesmay be different from those in the next cycle of itera-

tion. Therefore, the convergence criteria developed for in the number of QTL against the number of iterations
to determine an approximate burn-in period (plots notthe MCMC with fixed dimension are hardly applicable

to the reversible jump MCMC (e.g., Brooks 1997). In shown). The length of subsampling intervals was chosen
to eliminate obvious changing trends for all parameters.our simulation study, therefore, we empirically deter-

mined the burn-in period, the length of the MCMC Compared with the reversible jump algorithm for line-
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marker data. Genetics 151: 409–420.

ceptance rates for adding a new QTL to the model and Bink, M. C. A. M., L. L. G. Janss and R. L. Quaas, 2000 Markov chain
Monte Carlo for mapping a quantitative trait locus in outbreddeleting a QTL from the model in our simulation were
populations. Genet. Res. 75: 231–241.relatively low. This result is expected because too many

Brooks, S. P., 1997 Discussion to Richardson and Green (1997). J.
new values need to be generated for a birth step in the R. Stat. Soc. Ser. B 59: 774–775.

Cantet, R. J. G., and C. Smith, 1991 Reduced animal model forcomplicated mating design. The acceptance proportion
marker assisted selection using best linear unbiased prediction.for updating QTL locations was rather high (z75%).
Genet. Sel. Evol. 23: 221–233.

We used the method of Bink and Van Arendonk Fernando, R. L., and M. Grossman, 1989 Marker-assisted selection
using best linear unbiased prediction. Genet. Sel. Evol. 21: 467–(1999) to update marker genotypes in the simulation
477.study. This method is established on a marker-by-marker

Gelman, A. J. B., H. S. Carlin, H. S. Stern and D. B. Rubin, 1995
and individual-by-individual basis. In general, this kind Bayesian Data Analysis. Chapman & Hall, London.

Geman, S., and D. Geman, 1984 Stochastic relaxation, Gibbs distribu-of single-site update does not always lead to an irreduc-
tions, and the Bayesian restoration of images. IEEE Trans. Patternible sampler because of the strong dependency of close
Anal. Machine Intell. 6: 721–741.

relatives and strong dependency of adjacent loci. In our Green, P. J., 1995 Reversible jump Markov chain Monte Carlo com-
putation and Bayesian model determination. Biometrika 82: 711–simulation study, we did not find insufficient mixing in
732.marker genotype sampling, because the marker loci

Hastings, W. K., 1970 Monte Carlo sampling methods using Markov
were not tightly linked. However, a block sampling, e.g., chains and their applications. Biometrika 57: 97–109.

Heath, S. C., 1997 Markov chain Monte Carlo segregation andthe genotypes at a given locus being updated simultane-
linkage analysis for oligogenic models. Am. J. Hum. Genet. 61:ously for all individuals or sampling several loci jointly,
748–760.

is expected to be preferred over a single-site sampling Hoeschele, I., P. Uimari, F. E. Grignola, Q. Zhang and K. M. Gage,
1997 Advances in statistical methods to map quantitative traitin complex pedigrees and tightly lined loci. Such a sam-
loci in outbred populations. Genetics 147: 1445–1457.pling strategy will be incorporated into the proposed

Jansen, R. C., 1993 Interval mapping of multiple quantitative trait
algorithm. The marker genotype sampler used in this loci. Genetics 135: 205–211.

Kao, C. H., Z. B. Zeng and R. D. Teasdale, 1999 Multiple intervalstudy is suitable only in the case where there is no miss-
mapping for quantitative trait loci. Genetics 152: 1203–1216.ing marker nonfinal offspring. When there are missing Lander, E. S., and D. Botstein, 1989 Mapping Mendelian factors

markers in nonfinal offspring, more sophisticated sam- underlying quantitative traits using RFLP linkage maps. Genetics
121: 185–199.plers, e.g., the descent graph sampler (Sobel and Lange

Lynch, M., and B. Walsh, 1998 Genetics and Analysis of Quantitative1996), are required to update the marker complete Traits. Sinauer Associates, Sunderland, MA.
genotypes. The descent graph sampler can be used to Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller and E. Teller, 1953 Equation of state calculations bysample the gene flow patterns in arbitrarily complicated
fast computing machines. J. Chem. Phys. 21: 1087–1091.pedigrees. This powerful computational algorithm can Muranty, H., 1996 Power of tests for quantitative trait loci detection

be incorporated into our model. using full-sib families in different schemes. Heredity 76: 156–165.
Richardson, S., and P. J. Green, 1997 On Bayesian analysis ofFollowing the convention in human pedigree analysis,

mixtures with an unknown number of components. J. R. Stat.we have assumed that all founders are included in the Soc. Ser. B 59: 731–792.
model. In open-pollinated trees, however, seeds col- Satagopan, R. J., and B. S. Yandell, 1996 Estimating the number of

quantitative trait loci via Bayesian model determination. Speciallected from one tree (mother) are usually pollinated
Contributed Paper Session on Genetic Analysis of Quantitativefrom multiple unknown trees (fathers). Because the Traits and Complex Diseases. Biometric Section, Statistical Meet-

fathers (founders) are not identified, their contribution ing, Chicago, IL.
Satagopan, J. M., B. S. Yandell, M. A. Newton and T. G. Osborn,to the progeny is difficult to evaluate. Our model, in

1996 A Bayesian approach to detect quantitative trait loci using
theory, can include these founders in the pedigree but Markov chain Monte Carlo. Genetics 144: 805–816.

Schork, N. J., 1993 Extended multipoint identity-by-descent analysistreat their marker genotypes as missing. A method that
of human quantitative traits: efficiency, power, and modelingexcludes the missing founders while still analyzing the
considerations. Am. J. Hum. Genet. 53: 1306–1319.
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The prior distributions for allelic and dominance ef-

fects of the founders: Denote aj
k as a 2 3 1 vector for Similarly, if fk9 5 1 and fk ? 1, d j

kk9 is equivalent to 2 3
the allelic effects of the kth founder at the jth QTL, 1 normal random vector (d j
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kk9(2))T, with covariance

and dj
kk9 as a vector of interaction effects (dominance

effects) between the kth and the k9th founder alleles at s2
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the jth QTL. The dimension of dj
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is 4 because 2 founders carry a total of 4 alleles and
potentially contribute 2 3 2 5 4 possible interactions.

The priors for aj
k and dj

kk9 are assumed to be indepen- and
dent normals:
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If the inbreeding coefficient, fk, for the kth founder
equals 1, the two elements of aj

k are identical, and so
are the three elements of dj

kk. Therefore, aj
k and dj

kk each
Under the assumption that the founders are indepen-turns into a scalar, a j

k(1) and d j
kk(1). Similarly, if both fk dent from each other, the priors p(aj) and p(dj) can beand fk9 are unity, d j
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parameters to be estimated. If fk , 1, we have


